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Let El=� l
j=1 [.2j&1, .2j]�[0, 2?], R(.)=>2l

j=1 sin((.&.j)�2) and 1�r(.)=

(&1) j�- |R(.)| for . # (.2j&1 , .2j). Furthermore let V, W be arbitrary real tri-
gonometric polynomials such that R=VW and let A(.) be a real trigonometric
polynomial which has no zero in El . First we derive an explicit representation of
the Caratheodory function associated with f (.; W)=W(.)�A(.) r(.) on El . With
the help of this result the polynomials Pn(z), which are orthogonal on the set of
arcs 1El

:=[ei.: . # El] with respect to f (.; W), are completely characterized by a
quadratic equation. (In fact a more general case including Dirac-mass points is
considered.) This characterization is the basis of all of our further investigations on
polynomials orthogonal on several arcs as the description of that measures which
generate orthogonal polynomials with periodic or asymptotically periodic reflec-
tion coefficients, the explicit representation of the orthogonality measure of the
associated polynomials, the asymptotic representation of polynomials orthogonal
on 1El

, etc. � 1996 Academic Press, Inc.

1. Introduction and Notation

For n # N0 :=[0, 1, 2, ...] let PC
n denote the space of complex algebraic

polynomials of degree (abbreviated by �)�n, PC
&1 is the set which only

contains the zero-polynomial and

6n�2 :={ :
wn�2x

k=0

ak cos \n&2k
2

.++bk sin \n&2k
2

.+ : ak , bk # R=
denotes the space of real trigonometric polynomials of (integer or half
integer) degree. We say D # 6n�2 is of exact degree �D=n�2, if |a0|+|b0|{0.
As usual let PC and 6 denote the set of all complex algebraic and real
trigonometric polynomials, respectively.
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Each element D from 6n�2 has a representation of the form

D(.)=c `
n

j=1

sin \.&�j

2 + , c # R, (1.1)

where �j # [a, a+2?), a # R, or the �j's appear in pairs of complex con-
jugate numbers with real part in [a, a+2?). Hence, a real trigonometric
polynomial D # 6 which has an even (odd) number of zeros in [a, a+2?)
has integer (non-integer) degree. D # 6 is called monic if |c|=1 in (1.1).

Now let 2l, l # N, points .1� } } } �.2l with .2l&.1�2? be given, let

El := .
l

j=1

[.2j&1 , .2j], Int(El) := .
l

j=1

(.2j&1, .2j),

and (1.2)

1El :=[ei.: . # El]

and let R # 6 be the monic real trigonometric polynomial which vanishes
at the .j's (counted according to their multiplicity), i.e.,

R(.)= `
2l

j=1

sin \.&.j

2 + with R(.)<0 on Int(El) (1.3)

(note that .j is a zero of multiplicity k, if .j= } } } =.j+k&1).
Furthermore let V # 6l , W # 6l be a splitting of R, i.e.,

R(.)=V(.) W(.), (1.4)

and in particular each zero of V and W is a zero of R. Finally, let A # 6
be an arbitrary real trigonometric polynomial which has no zeros in El , i.e.,

A(.){0 for . # El . (1.5)

This means that A can be represented in the form

A(.) :=cA `
m*

j=1
\sin

.&!j

2 +
mj

# 6, (1.6)

where m*, mj # N and where the !j's are distinct and lie in C"El .
In this paper we investigate polynomials orthogonal with respect to

weight functions of the form

f (.; A, W) :={
W(.)

A(.) r(.)
, . # El (1.7)

0, . � El
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where

1
r(.)

:=
(&1) j

- |R(.)|
, . # (.2j&1 , .2j), j=1, ..., l. (1.8)

Let us mention that

sgn
1

r(.)
=(&1) l sgn `

l&1

j=1

sin \.&.2j+1

2 + for . # Int(El).

Note that f (.; A, W) is a function which is not necessarily positive on El

and which has square root singularities at (some of ) the endpoints of El .
As usual, an algebraic polynomial Pn of degree n is said to be orthogonal

with respect to the weight function f (.; A, W), if

|
El

e&ij.Pn(ei.) f (.; A, W) d.=0, j=0, ..., n&1. (1.9)

In fact we even study a more general class of orthogonality measures which
also includes Dirac-mass points (compare (1.17) below). Because of the
orthogonality property (1.9) we also speak of orthogonal polynomials on
several arcs of the unit circle.

To guarantee that f (.; A, W) is integrable and to get classical
orthogonality we have to make the following assumption:

Assumption 1.1. (a) If R(.)=sin((.&.j)�2)kj R� (.), then W(.)=
sin((.&.j)�2)mj W� (.) where mj�(kj&1)�2.

(b) �A&�W+l�2 # Z.

If assumption (b) is not fulfilled then one gets by the methods of this
paper a non-classical orthogonality property of Pn with respect to
f (.; A, W) or to a functional of the form (1.17) below. Due to lack of
space this case is not treated in this paper (the interested reader may see
[28, Ch. 4]).

To get acquainted with the notation let us consider some illustrative
examples for two arcs: Let

.1 , .2 , .3 , .4 # [0, 2?) with 0�.1<.2<.3<.4<2?

be given and let R(.)=�2
k=0 ak cos k.+bk sin k. be the real trigono-

metric polynomial which vanishes exactly at the points .j , j=1, ..., 4, and
is negative on Int(E2), where

E2=[.1 , .2] _ [.3 , .4], (1.10)
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i.e., R is of the form

R(.)= `
4

j=1

sin \.&.j

2 + .

Now let us study for this special case of two intervals, or of two arcs 1E2
=

[ei.: . # E2], what kind of weight functions fit into the class of weight
functions treated in this paper:

Example 1. Let A be a real trigonometric polynomial which has an
even number of zeros in (.2 , .3), i.e.,

A # 6 with A(.)>0 on E2 ,

in particular we could choose A#1.

(a) If we set

W(.)=1

then the orthogonality condition (1.9) takes by (1.7) the form

|
.2

.1

e&ij.Pn(ei.)
1

�& `
4

j=1

sin \.&.j

2 +
d.

A(.)

&|
.4

.3

e&ij.Pn(ei.)
1

�& `
4

j=1

sin \.&.j

2 +
d.

A(.)
=0

for j=0, ..., n~ &1, (1.11)

where n~ �n. Note that n~ >n is possible since the weight function f (.; A, 1)
has a sign change on [0, 2?]. Furthermore, since W#1 and thus by (1.4)

V(.)=R(.),

the orthogonality condition (1.9) for f (.; A, V) reads as follows:
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|
.2

.1

e&ij.Pn(ei.)
�& `

4

j=1

sin \.&.j

2 +
A(.)

d.

&|
.4

.3

e&ij.Pn(ei.)
�& `

4

j=1

sin \.&.j

2 +
A(.)

d.=0

for j=0, ..., n̂&1, n̂�n. (1.12)

Naturally Pn from (1.11) and (1.12) will not be the same in general. Other
choices of W, which lead to weight functions having exactly one sign
change, are obviously the following

W(.)=sin \.&.j

2 + , j # [1, 4]

W(.)=sin \.&.2

2 + sin \.&.3

2 +
or

W(.)=sin \.&.1

2 + sin \.&.4

2 + .

Next let us demonstrate how to get weight functions in the classical sense,
i.e., weight functions nonnegative on E2 , which might be of most interest.

(b) If

W(.)=sin \.&.2

2 + , V(.)= `
4

j=1
j{2

sin \.&.j

2 +
then f (.; A, W) from (1.7) becomes a nonnegative function, more
precisely the orthogonality relation (1.9) becomes

|
E2

e&ij.Pn(ei.)

�
sin \.&.2

2 +
sin \.&.3

2 +
1

�&sin \.&.1

2 + sin \.&.4

2 +
d.

A(.)
=0

for j=0, ..., n&1,
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and with respect to &f (.; A, V), which is also a nonnegative weight
function,

|
E2

e&ij.Pn(ei.)�
sin \.&.3

2 +
sin \.&.2

2 +
�&sin \.&.1

2 + sin \.&.4

2 + d.
A(.)

=0

for j=0, ..., n&1.

Similarly, choosing

W(.)=sin \.&.2

2 + sin \.&.4

2 + , V(.)=sin \.&.1

2 + sin \.&.3

2 +
(1.9) becomes for the nonnegative weight function & f (.; A, W)

|
E2

e&ij.Pn(ei.)�&
sin \.&.2

2 + sin \.&.4

2 +
sin \.&.1

2 + sin \.&.3

2 +
d.

A(.)
=0

for j=0, ..., n&1

and for the nonnegative weight function f (.; A, V)

|
E2

e&ij.Pn(ei.)�&
sin \.&.1

2 + sin \.&.3

2 +
sin \.&.2

2 + sin \.&.4

2 +
d.

A(.)
=0

for j=0, ..., n&1.

Other choices of W which lead to nonnegative weight functions are

W(.)=sin \.&.3

2 +
W(.)=sin \.&.1

2 + sin \.&.3

2 + ,

W(.)=&sin \.&.2

2 + sin \.&.4

2 +

145ORTHOGONAL POLYNOMIALS



File: 640J 294907 . By:CV . Date:23:05:96 . Time:15:52 LOP8M. V8.0. Page 01:01
Codes: 2082 Signs: 728 . Length: 45 pic 0 pts, 190 mm

W(.)=sin \.&.1

2 + sin \.&.2

2 + ,

W(.)= &sin \.&.3

2 + sin \.&.4

2 + .

Example 2. (a) Now let A be a trigonometric polynomial which has
exactly one sign change in (.2 , .3) and (.4 , 2?) and no other zeros in
[0, 2?], i.e., A is of the form

A(.)=sin \.&!1

2 + sin \.&!2

2 + A� (.), (1.13)

where !1 # (.2 , .3), !2 # (.4 , 2?) and A� (.)>0 on [0, 2?]. Then for

W(.)=1

the orthogonality condition (1.9) becomes

|
E2

e&ij.Pn(ei.)
1

|A(.)| �& `
4

j=1

sin \.&.j

2 +
d.=0

for j=0, ..., n&1. (1.14)

Since W(.)=1 we have by (1.4)

V(.)=R(.)

and the orthogonality condition (1.9) for f (.; A, V) becomes

|
E2

e&ij.Pn(ei.)
�& `

4

j=1

sin \.&.j

2 +
|A(.)|

d.=0

for j=0, ..., n&1. (1.15)

Other nonnegative weight functions can be obtained by choosing

W(.)=sin \.&.1

2 + sin \.&.4

2 +
of

W(.)= &sin \.&.2

2 + sin \.&.3

2 + .
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(b) Let us note that the trigonometric polynomial A in (a) is of
integer degree since A� (.)>0 on [0, 2?]. If we set

A(.)=sin \.&!1

2 + A� (.),

where !1 # (.2 , .3) and A� (.)>0 on [0, 2?], (1.16)

where A� is from 6, then A is of half integer degree and for

W(.)=1, V(.)=R(.)

the orthogonality condition (1.9) looks the same as in (1.14) and (1.15),
but Assumption 1.1(b) is hurt.

The reason why we considered not only the weight functions f (.; A, W)
but also f (.; A, V) is that it will turn out that the polynomials orthogonal
with respect to f (.; A, W) and f (.; A, V) are very closely related to each
other, comparable to the Chebyshev polynomials of first and second kind
on the real line.

Example 3. Next let us point out that the weight functions considered
above multiplied by a real trigonometric polynomial S having all its zeros
in [0, 2?]"Int(E2), i.e., S is of the form

S(.)=c `
k

j=1

sin \.&�j

2 + , c # R"[0], k # N, �j � Int(E2),

are also covered in what follows (compare (1.25) below). For an example
let us choose a real trigonometric polynomial S of degree one which has
exactly one zero in each of the intervals (0, .1) and (.4 , 2?), or exactly two
signs changes in (.2 , .3), i.e., S is of the form

S(.)=c } sin \.&�1

2 + sin \.&�2

2 + ,

c # R"[0], �1 # (0, .1), �2 # (.4 , 2?) or �1 , �2 # (.2 , .3).

Multiplying S, say by the weight function from (1.15), we obtain an
orthogonality condition of the form

|
E2

e&ij.Pn(ei.)
S(.)

|A(.)| �& `
4

j=1

sin \.&.j

2 + d.=0, j=0, ..., n&1.

As already announced above, we investigate the more general case of
polynomials orthogonal with respect to the linear functional

L(h; A, W, *) :=
1

2? |
El

h(ei.) f (.; A, W) d.+G(h; A, W, *) (1.17)
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with (recall the notation in (1.6))

G(h; A, W, *) :=
1
2

:
m*

j=1

(1&*j) :
mj&1

&=0

+j, &(&1)& $ (&)
zj \h(z)

z + , (1.18)

where the +j, &'s are certain complex numbers depending on A, W and R
(for the exact description see theorem 2.1), zj :=ei!j # C"1El , $ (&)

zj
( g) :=

(&1)& g(&)(zj)�& ! and *=(*1 , ..., *m*) # 2m* , where

2m* :={(*1 , ..., *m*) : *j # [&1, 1] and *j1
=*j2

if zj1
=

1
zj2
= (1.19)

(note that zj1
=1�zj2

is equivalent with !j1
=!j2

), i.e., if *j=&1 then there
appears a ``Dirac mass-point'' at zj=ei!j.

Hence we are describing those polynomials Pn of degree n which satisfy
the orthogonality condition

L(z&kPn ; A, W, *)=
1

2? |
El

e&ik.Pn(ei.) f (.; A, W) d.

+
1
2

:
m*

j=1

(1&*j) :
mj&1

&=0

+j,&(&1)& $ (&)
zj

(z&(k+1)Pn)=0

for k=0, ..., n&1. (1.20)

We call a functional L positive-definite resp. definite if det(cj&k)n
j,k=0>0

resp. {0 for all n # N0 , where the moments cj are given by cj :=L(z&j ),
j # Z. Note that we don't suppose the linear functional L( } ; A, W, *) to be
positive-definite and also not to be definite.

For an illustrative example where point measures appear see example (d)
below. First let us list in (a)�(c) those weight functions which appear as
special cases of our functional L( } ; A, W, *) with (*1 , ..., *m*)=
(1, 1, ..., 1), i.e., G( } ; A, W, *)#0, and which seem to be the most impor-
tant and interesting ones.

Examples. (a) Suppose that the trigonometric polynomial A has no
zeros in [0, 2?]. Then

f (.; A, 1)=
(&1) j

A(.) �& `
2l

j=1

sin \.&.j

2 +
and

(1.21)

f (.; A, R)=

(&1) j �& `
2l

j=1

sin \.&.j

2 +
A(.)
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for . # [.2j&1, .2j], j=1, ..., l, and

f (.; A, 1)= f (.; A, R)=0 for . � El .

Note that f (.; A, 1) and f (.; A, R) change sign from arc to arc.
Multiplying f (.; A, 1) by

W(.)= `
l

j=1

sin \.&.2j&1

2 + , V(.)= `
l

j=1

sin \.&.2j

2 + (1.22)

we obtain the non sign-changing weight functions

f (.; A, W)=
(&1) l

A(.)�(&1) l

`
l

j=1

sin \.&.2j&1

2 +
`

l

j=1

sin \.&.2j

2 +
. # El (1.23)

f (.; A, V)=
(&1) l

A(.)�(&1) l+1

`
l

j=1

sin \.&.2j

2 +
`

l

j=1

sin \.&.2j&1

2 +
and

f (.; A, W)= f (.; A, V)=0 for . � El .

(b) If A has an odd number of zeros in each interval (.2j , .2j+1),
j=1, ..., l&1, we get the non sign-changing weight functions, . # El ,

f (.; A, 1)=
1

|A(.)| �& `
2l

j=1

sin \.&.j

2 +
and (1.24)

f (.; A, R)=
�& `

2l

j=1

sin \.&.j

2 +
|A(.)|

and

f (.; A, 1)= f (.; A, R)=0 for . � El .
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Of course, multiplying f (.; A, 1) by W from (1.22) we would obtain a
weight function changing sign from arc to arc.

(c) Let S be a trigonometric polynomial having all its zeros in
[0, 2?]"Int(El) and having no common zeros with A, i.e.,

S(.)=c `
k

j=1

sin \.&�j

2 + ,

c # R"[0], k # N, k even, �j � Int(El) and �j � [!1 , ..., !m*] (1.25)

and let (note that we did not assume that R and W have to have simple
zeros)

R� (.)=S2(.) `
2l

j=1

sin \.&.j

2 + and E� =El _ [�1 , ..., �k].

Let f� be the weight function from (1.7) associated with R� . Then for
. # [.2j&1 , .2j], j=1, ..., l,

f� (.; A, S2)=
(&1) j+1 S(.)

A(.) �& `
2l

j=1

sin \.&.j

2 +
and

f� (.; A, S2R)=

(&1) j+1 S(.) �& `
2l

j=1

sin \.&.j

2 +
A(.)

and

f� (.; A, S2)= f� (.; A, S2R)=0 for . � El .

If we choose W as in (1.22) then

f� (.; A, S2W)=
S(.)
A(.) �(&1) l

`
2l

j=1

sin \.&.2j&1

2 +
`
2l

j=1

sin \.&.2j

2 +
for . # El and zero otherwise.
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(d) Suppose that A has only real zeros and exactly one simple zero
in each interval (.2j , .2j+1), j=1, ..., l, .2l+1 :=.1+2?, i.e.,

A(.)= `
l

j=1

sin \.&!j

2 + , where !j # (.2j , .2j+1).

Then for the weight f (.; A, R) (see the second relation in (1.24)) the
orthogonality condition (1.20) takes the form, by inserting the explicit
expressions for +j, 0 (compare theorem 2.1 below),

1
2? |

El

e&ik.Pn(ei.)
�& `

2l

j=1

sin \.&.j

2 +
|A(.)|

d.

+
1
2

:
l

j=1

(1&*j)
- R(ei!j)

i \ d
dz

A+ (ei!j)

e&i(k+1) !jPn(ei!j)=0

for k=0, ..., n&1, (1.26)

where R(ei.) :=eil.R(.) and A(ei.) :=ei(l�2).A(.). Recall that *1 , ..., *l can
be chosen arbitrary from [&1, +1]. Relation (1.26) represents an
orthogonality relation for Pn with respect to a positive measure d_ which
has mass points at those ei!j where *j= &1.

Stated in a more general form: if f (.; A, W) is a nonnegative weight
function of the form (1.7) and if all real zeros !1 , ..., !p* , p*�m*, of A are
simple and if *j=1 for the zeros !j � R, then the orthogonality condition
(1.20) represents an orthogonality relation for Pn with respect to a measure
d_ which has mass points at the !j's, j=1, ..., p*. More precisely (1.20)
becomes

1
2? |

2?

0
e&ik.Pn(ei.) d_(.; A, W, *)=0, k=0, ..., n&1,

where with the same notation as above

d_(.; A, W, *) := f (.; A, W) d.&? :
p*

j=1

(1&*j)

_
i - R(ei!j)

\ d
dz

A+ (ei!j)
e&i!j$(ei.&ei!j) d..
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Finally let us show what kind of weight functions, which appear as spe-
cial cases of our functional, have been investigated in the literature so far.
To get the single interval case, i.e., the case of the whole unit circumference,
let E1=[0, 2?] and let R(.)=sin(.�2) sin((.+2?)�2)=&sin2(.�2), then
in view of Assumption 1.1 the following weight functions are covered

f \.; A, &sin
.
2+=

1
A(.)

,

where A is an arbitrary positive trigonometric polynomial of integer
degree, i.e., A has no zeros in [0, 2?]. Thus A can be represented in the
form A(.)=|T(ei.)| 2, . # [0, 2?], where T(z) is an algebraic polynomial
with all its zeros in |z|<1. This means (see e.g., [31, p. 31] and [4]) that
f (.; A, &sin .�2) is the well-known Bernstein�Szego� weight function.
Polynomials orthogonal with respect to Bernstein�Szego� weights play a
central role in the asymptotic representation of orthogonal polynomials
(see, e.g. [15]). For the simplest case A#1 we obtain the Lebesgue
measure and in this case, as it is well known, the orthogonal polynomials
are of the form Pn(z)=zn.

The other case which has been investigated from different points of view,
like asymptotics etc., (see [1, 7, 8, 14]) is the case of an arc not necessarily
the whole unit circumference, i.e.,

E1=[:, 2?&:], : # (0, ?), R(.)=&sin \.&:
2 + sin \.+:

2 + .

In this setting (1.7) takes the form

f \.; A, sin \.+:
2 ++={�

sin \.+:
2 +

sin \.&:
2 +

}
1

A(.)
, for . # E1

(1.27)

0, elsewhere,

and with A(.)=sin((.&;)�2) A� (.), ; # [&:, :],

f (.; A, R)=�
sin \.&:

2 + sin \.+:
2 +

sin \.&;
2 +

}
1

A� (.)

for . # E1 and 0 elsewhere. (1.28)
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In fact in [1, 14] asymptotics for polynomials orthogonal with respect to
the more general class of weight functions, when A is replaced in (1.27)
and (1.28) by a continuous positive weight function on [:, 2?&:], are
obtained. But the methods used there seem to be limited to the one arc
case.

It is also worth mentioning that Geronimus [7, 8, 9] has shown that
polynomials with constant reflection coefficients are orthogonal to
measures whose absolutely continuous part is of the form (1.28) and, more
general, polynomials with periodic reflection coefficients are orthogonal to
measures whose absolutely continuous part is of the form (1.24).

Let us briefly give an outline, for the simplest cases, of the main input
of this paper. Loosely formulated, we shall show that a polynomial Pn(z)=
zn+... is orthogonal with respect to a functional of the form L( } ; A, W, *)
if and only if there exists a polynomial Qm and a polynomial g(n) # PC

l&1

such that

W(z) P2
n(z)&V(z) Q2

m(z)=znA(z) g(n)(z). (1.29)

Further, if (1.29) holds, then the polynomial Qm can be represented in
terms of Pn and the polynomial of the second kind and what is important,
Qn is orthogonal with respect to f (.; A, V). In a forthcoming paper [25]
we shall see that the polynomials g(n) , n # N, which are all of degree less
than or equal to l&1, contain almost all information on the polynomials
orthogonal with respect to L( } ; A, W, *) and also with respect to
L( } ; A, V, *). So it will turn out that the n th associated polynomials of
the polynomials orthogonal with respect to L( } ; A, W, *) are orthogonal
with respect to a measure which is again of the type treated in this paper
and can be described with the help of g(n) . Furthermore the g (n)'s are
related to each other by a nonlinear recurrence relation from which a non-
linear recurrence relation for the reflection coefficients of the orthogonal
polynomials can be extracted.

Let us demonstrate by another consideration the usefulness of (1.29).
Suppose we know polynomials TN and UN&l satisfying a relation of the
form

T2
N(z)&R(z) U2

N&l (z)=czN, c # R"[0], (1.30)

then by multiplying (1.29) and (1.30) one gets by straightforward calcula-
tion

W(TNPn+VUN&lQm)2&V(TNQm+WUN&lPn)2=cznNAg(n) . (1.31)
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Repeating this procedure to (1.30) and (1.31) we obtain an infinite
sequence of orthogonal polynomials and in this way we can generate all
orthogonal polynomials with respect to L( } ; A, W, *) and simultaneously
with respect to L( } ; A, V, *). As a consequence of (1.31), and of the
above characterization, one obtains g(n+N)=cg(n) , which gives periodicity
of the reflection coefficients. Or in other words, a relation of the form (1.30)
is fulfilled if and only if the reflection coefficients of the polynomials
orthogonal with respect to L( } ; A, W, *) are periodic from a certain index
onward. For the rigorous proofs of these and other facts see the authors
forthcoming papers [25, 26].

Why is it important to know polynomials orthogonal with respect to
f (.; A, W) or L( } ; A, W, *) besides being of interest in its own right?
One of the reasons is that when we have information on the polynomials
orthogonal with respect to f (.; A, W) then we know the asymptotic
behaviour of the orthogonal polynomials for such classes of weight func-
tions which can be sufficiently well approximated by weight functions of
the form f (.; A, W), that is, for which a sequence of trigonometric poly-
nomials An can be constructed such that the f (.; An , W)'s converge to the
desired weight function on El . By the way, let us point out in this connec-
tion that A is only assumed to have all zeros outside El and that there is
no restriction on the size of the degree of A. It's worth mentioning that this
was exactly the way how Szego� [31] obtained his famous asymptotic for-
mula for polynomials orthogonal with respect to weight functions from the
Szego� -class. The main advantage in the Szego� case, i.e., the case of the
whole unit circumference, is that the polynomials orthogonal with respect
to f (.; A, W) can easily be determined (see [4, 31]) in contrast to the
several arc case. As we have demonstrated above, in the several arc case an
explicit determination is easily possible if there exists a polynomial TN on
El satisfying relation (1.30) or in other words if the polynomials orthogonal
with respect to f (.; A, W) resp. L( } ; A, W, *) have periodic reflection
coefficients. Applying the above described procedure of approximation we
will get asymptotic formulas for orthogonal polynomials having asymptoti-
cally periodic reflection coefficients. Details will be given in [25, 26]. For
the general case asymptotic representations can be obtained by assuming
that the reflection coefficients behave asymptotically like those of the n th,
n large, associated polynomials. Considerations of this kind are under
work.

Polynomials on several real intervals, resp. several arcs��recall that poly-
nomials orthogonal on the unit circle lead to polynomials orthogonal on
the interval [&1, 1]��play also an important role in modern solid state
physics [5, 16, 27, 29, 30] because in problems of this field it's natural that
the densities of states have band structure, i.e., live on several arcs, resp.
several intervals. For the mathematical approach to the case of several real
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intervals compare [2, 3, 11, 12, 13, 18�20]. In this paper we try to carry
over some of the main ideas of [20] to the several arc case, where the
situation turns out to be much more complicated than the real case. It is
surprising that not much is known about orthogonal polynomials on
several arcs. As already mentioned the only results on this topic come from
Geronimus [6�9] and Achieser [1] and a very recent contribution on
polynomials with asymptotically constant recurrence coefficients from
Golinskii, Nevai and Van Assche [14].

In order to be able to state our results we need some preliminaries and
notation. Let us first state the well known relation between algebraic and
trigonometric polynomials: Let D # 6 of degree �D=n�2, then we assign to
D the algebraic polynomial D # PC

n given by

D(ei.) :=ei(n�2).D(.)=ei �D.D(.). (1.32)

Hence �D=n=2�D and D is a selfreciprocal polynomial, i.e., D=D*,
where the reciprocal polynomial D* is defined by

D*(z) :=znD� \1
z+=z�DD� \1

z+ . (1.33)

On the other hand each polynomial D # PC of degree �D=n, satisfying
D=D*, induces a real trigonometric polynomial D by

D(.) :=e&i(n�2).D(ei.) with �D=
n
2

.

Besides (1.33) we'll also need the following notation: if C # PC
m is a polyno-

mial of exact degree �C�m, we define the modified reciprocal polynomial
C m

(* ) by

C m
(*)(z) :=zmC� \1

z+=zm&�CC*(z). (1.34)

Notice that the exponent m of z in (1.34) is equal to the subindex on the
left hand side and that for the modified reciprocal polynomial the index m
must be written explicitly. The reason why we distinguish between the
modified reciprocal polynomial C m

(* ) and the reciprocal polynomial C* is
that C m

(*)(0)=0 is possible (if �C<m) whereas C*(0) is always different
from zero.
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We finish this section with the following additional notation:

(a) The polynomial of the second kind with respect to a linear func-
tional L (not necessarily of the form (1.17)) is defined by

0n(z) :={L \x+z
x&z

(Pn(x)&Pn(z))+ , if n # N
(1.35)

L(1) P0(0), if n=0,

where L acts on x. We see that �0n=max[&1, n&k] if c0= } } } =
ck&1=0, ck{0. Here the cj's are given by the power series expansion
L((x+z)�(x&z))=c0+2 ��

j=1 cjz j.

(b) Let Pn # PC
n be an arbitrary polynomial and let }, + # Z. The

orthogonality property

L(z&jPn)=0, j=}+1, ..., +&1,

L(z&}Pn){0, and L(z&+Pn){0

will be abbreviated by

L(z&jPn)=0, j # [}+1, ..., +&1],

and we use round brackets ``('' resp. ``)'', if the lower order }+1 resp. the
upper order +&1 is not necessarily the maximal one.

(c) Let the function H be analytic at z=0, then we write
H(z)=O(z&), & # N0 , if H has a representation of the form H(z)=
��

j=& Kjz j for |z| sufficiently small. If K&{0, we write H(z)=O4 (z&).

This paper is organized as follows. In Section 2 we state the main results
which are the explicit representation of the Stieltjes transform of the func-
tional L( } ; A, W, *). A characterization of the orthogonal polynomials by
a quadratic equation and an integral representation of the orthogonal poly-
nomials and of the associated polynomials is given. In Section 3 some
preliminary results are given, where in particular the square root function
- R is discussed in detail, which is needed for the proof of Theorem 2.1.
Furthermore another characterization of orthogonal polynomials is given,
which is the basis for the above mentioned characterization by the quad-
ratic equation. Finally, in Section 4 the main results are proved.

2. Statement of the Main Results

In order to be able to state our results in closed form let

v :=�V, w :=�W, a :=max {�A, w&
l
2= (2.1)
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and define the algebraic polynomials R, V, W and A by

R(ei.) :=eil.R(.), �R=2l

V(ei.) :=eiv.V(.), �V=2v
(2.2)

W(ei.) :=eiw.W(.), �R=2w

A(ei.) :=eia.A(.), �A=a+�A,

where

A(z)=za&�AA� (z) with A� (ei.) :=ei �A.A(.).

In view of (1.6) we have the explicit representation

A(z)=cAza&�A `
m*

j=1

(z&zj)
mj, where cA # C, zj=ei!j. (2.3)

Let us mention that by (2.1) a=�A if �A�w&l�2, which will be fulfilled
in most of the interesting cases. So the reader, who is not interested in
details, should associate with a the degree of A. By the definitions (2.2) the
above polynomials are selfreciprocal; to be more precise we have R=R*,
V=V*, W=W* and A=A2a

(*) .
For the following let us point out that we choose that branch of the

square root of - R, which is analytic on C"1El and satisfies (compare
Lemma 3.1 and Remark 3.2 in Section 3)

sgn - R(ei.)=(&1) j ei(l�2). for . # (.2j , .2j+1),

j=0, ..., l, .2l+1 :=.1+2?. (2.4)

One of the main reasons that many properties about polynomials
orthogonal with respect to weight functions of the form (1.7) or with
respect to a functional L( } ; A, W, *) of the form (1.17) can be derived is
that the Stieltjes transform of the functional L( } ; A, W, *) can be given
explicitly as our first theorem shows.

Theorem 2.1. Let A, R, V, W and the vector * # 2m* be given and let
B :=B( } ; A, W, *) # PC

2a be the uniquely determined selfreciprocal polynomial
B=B2a

(*), which satisfies (compare with Lemma 3.3 below) the interpolation
conditions

(VB)(&) (zj)=&*j (za+l�2&w
- R)(&) (zj), &=0, ..., mj&1, j=1, ..., m*
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and the ``zero-condition''

lim
z � 0

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

# R.

Then the following identity holds for z # C"(1El _ [zj : *j=&1]), where we
use the same notation as in (1.17):

L \x+z
x&z

; A, W, *+=
1

2? |
El

ei.+z
ei.&z

W(.)
A(.) r(.)

d.

+
1
2

:
m*

j=1

(1&*j) :
mj&1

&=0

+j, &(&1)& $ (&)
zj \1

x
x+z
x&z+

=&

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

; (2.5)

here $ (&)
zj

acts on x and the constants +j, & are given by

+j, & :=
1

(mj&1&&) ! \
za+l�2&wW

iAj - R +
(mj&1&&)

(zj),

Aj (z) :=
A(z)

(z&zj)
mj

.

If the functional L( } ; A, W, *) is positive definite then
L((x+z)�(x&z); A, W, *) is a Caratheodory-function.

From the definition of the +j, &'s one obtains that the linear functional
L( } ; A, W, *) from (1.17) can be written in the compact form

L(h; A, W, *)=
1

2? |
El

h(ei.) f (.; A, W) d.

+
1
2

:
m*

j=1

1&*j

(mj&1)! \
za+l�2&w&1Wh

iAj - R +
(mj&1)

(zj). (2.6)

The following theorem is the main result of this paper and characterizes
polynomials orthogonal with respect to a weight function of the form (1.7)
or to a functional of the form (1.17).

Theorem 2.2. Let the polynomials R, V, W, A, B :=B( } ; A, W, *) and
the linear functional L( } ; A, W, *) be given. Let + # N0 and Pn be a
polynomial of degree n, where n�max[a+l�2&w, 2v&l] if +>0 and
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n�max[a+l�2&w, 2v&l, �A+l�2+v] if +=0. Furthermore let p be the
multiplicity of the zero of Pn at z=0. Finally if the polynomials Pn and
A�za&�A have a common zero at zj , then zj is supposed to be a simple zero
of Pn and of A. Then the following propositions are equivalent:

(a) L(z&jPn ; A, W, *)=0 for j # (0, ..., n++&1] and there exists a
{ # N such that L(z{Pn ; A, W, *){0.

(b) There exists a polynomial Qn+l&2v # PC
n+l&2v and there exists a

polynomial g(n) with g(n)(0){0 from PC
l&2+ if +>0 and from PC

l& p&1 if
+=0, such that

W(z) P2
n(z)&V(z) Q2

n+l&2v(z)=zn+ p&(a+l�2&w)++A(z) g(n)(z), (2.7)

where p�+&1 if +>0, and

V(zj) Qn+l&2v(zj)=*j - R(zj) Pn(zj), j=1, ..., m*, (2.8)

VQn+l&2v

- R Pn
} z=0

=1, V(0) Q*n+l&2v(0)=- R(0) Pn*(0). (2.9)

(c) There exists a polynomial g(n) with g(n)(0){0 from PC
l&2+ if +>0

and from PC
l& p&1 if +=0, such that

W(z) P2
n(z)&V(z) \i0n(z) A(z)&Pn(z) B(z)

za+l�2&w +
2

=zn+ p&(a+l�2&w)++A(z) g(n)(z), (2.10)

where p�+&1 if +>0, and (``sign-condition'')

\0n

Pn+ (z)&

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

=O(zmax[0, �A +l�2&w+1]). (2.11)

In (2.10) resp. (2.11) 0n denotes the polynomial of the second kind with
respect to L( } ; A, W, *).

Thus, Theorem 2.2 gives the following result: given a polynomial Pn , in
order to decide if it is orthogonal with respect to L( } ; A, W, *) one only
has to look for another polynomial Qn+l&2v (and this polynomial is of the
form given in (2.10) if it exists) and to calculate the polynomial expression on
the left hand side of (2.7). Then Pn is orthogonal if and only if the left hand
side of (2.7) has a zero at z=0 of multiplicity n+ p&(�A+l�2&w)++ and
a degree �n+�A+l�2+w&1 if +=0 resp. �n+ p+�A+l�2+w&+ if
+>0 and the ``sign-conditions'' (2.8) and (2.9) are fulfilled.
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Remark 2.3. Concerning the assumptions of Theorem 2.2 let us note:

(a) The assumption that Pn and A�za&�A have at most a simple zero
in common is no loss of generality. This can always be obtained by reduc-
ing common zeros of Pn and A (note that with zj , |zj |{1, also 1�zj has to
be reduced in A).

(b) The conditions (2.8) and (2.9) resp. condition (2.11) are
necessary to fix the sign of Qn+l&2v resp. (i0nA&PnB)�za+l�2&w at the
zeros of A and at z=0, because these polynomials appear in quadratic
form in (2.7) resp. (2.10). The opposite sign in (2.8) and (2.9) resp. in (2.11)
would destroy the orthogonality property of Pn .

Note that the order of the O-term in (2.11) does not depend on the
degree n. Using similar methods as in the proof of Theorem 2.2 (compare
(4.9)�(4.11)) we see that condition (2.11) follows from (2.10) if for example
a+l�2&w=0, n>0 and Pn(0){0.

(c) If a polynomial Pn0
of degree n0 , n0 # N0 , fulfills an infinite ``lower''

orthogonality property with respect to L( } ; A, W, *), i.e., L(z{Pn0
;

A, W, *)=0 for all { # N (this case is not contained in Theorem 2.2), then

Pn0+k(z) :=zkPn0
(z), k # N0 , (2.12)

are orthogonal polynomials with respect to L( } ; A, W, *) (compare
Theorem 3.8(a) below), and the polynomials R, W, A and B can be given
explicitly as

R(z)=(1&z)2 (i.e. El=E1=[0, 2?]), W(z)=i(1&z)

A(z)=
i
b

P*n0
(z) Pn0

(z), B(z; W, *)=
i

2b
(0*n0

(z) Pn0
(z)&P*n0

(z) 0n0
(z)),

where b # R"[0] is given by Pn0
(z) 0*n0

(z)+P*n0
(z) 0n0

(z)=2bzn0. In this
case we have by Theorem 2.1

L \x+z
x&z

; A, W, *+=
0*n0

(z)
P*n0

(z)
.

This means that the polynomials defined in (2.12) are exactly the
Bernstein�Szego� polynomials, mentioned in Section 1, if L( } ; A, W, *) is
positive definite.

Next we show that the polynomial Qn+l&2v from Theorem 2.2 fulfills an
orthogonality property with respect to L( } ; A, V, *) if f (.; A, V) is
integrable, which for instance is satisfied for each choice of W if R has only
simple zeros.
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Corollary 2.4. Let the polynomials R, V, W, A, B :=B( } ; A, W, *) be
given as in Theorem 2.2. For an integer n�max[�A+l�2&w, 2v&l] let
Pn # PC

n , �Pn=n, such that L(z&jPn ; A, W, *)=0 for all j # (0, ..., n+
+&1], + # N0 . If f (.; A, V) is integrable, then the polynomial

Qn+l&2v(z) :=
i0n(z) A(z)&Pn(z) B(z)

za+l�2&w # PC
n+l&2v (2.13)

is orthogonal with respect to L( } ; A, W, *), i.e.,

L(z&jQn+l&2v ; A, V, *)=0 for j # (0, ..., (n+l&2v)++&1]. (2.14)

Finally, let us give an integral representation of Qn+l&2v and Pn in terms
of Pn and Qn+l&2v , respectively.

Theorem 2.5. Let the polynomial Pn of degree n be orthogonal with
respect to L( } ; A, W, *) and let Qn+l&2v be given as in (2.13). Further sup-
pose that R has only simple zeros.

(a) For n�max[�A+l�2&w, 2v&l, 1] one has

l even:

Qn+l&2v(z)=izw&l�2 _ 1
2? |

El

ei.+z
ei.&z

_(Pn(ei.) e&iw.W(ei.)&Pn(z) z&wW(z))
1

r(.)
d.

&
1

2? |
El

ei.+z
ei.&z

(e&ia.A(ei.)&z&aA(z))

_Pn(ei.) f (.; A, W) d.

+z&aA(z) G \x+z
x&z

Pn ; A, W, *+& ; (2.15)

l odd:

Qn+l&2v(z)=izw&(l&1)�2 _1
? |

El

ei(.�2)

ei.&z

_(Pn(ei.) e&iw.W(ei.)&Pn(z) z&wW(z))
1

r(.)
d.
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&
1

2? |
El

ei.+z
ei.&z \

2
ei.+z

e&i(a&1�2).A(ei.)&z&(a+1�2)A(z)+
_Pn(ei.) f (.; A, W) d.

+z&(a+1�2)A(z) G \x+z
x&z

Pn ; A, W, *+& . (2.16)

(b) If f (.; A, V) is integrable and n�max[�A+l�2&w, 2v&l+1]
then

l even:

Pn(z)=izv&l�2 _ 1
2? |

El

ei.+z
ei.&z

_(Qn+l&2v(ei.) e&iv.V(ei.)&Qn+l&2v(z) z&vV(z))
1

r(.)
d.

&
1

2? |
El

ei.+z
ei.&z

(e&ia.A(ei.)&z&aA(z))

_Qn+l&2v(ei.) f (.; A, V) d.

+z&aA(z) G \x+z
x&z

Qn+l&2v ; A, V, *+& ; (2.17)

l odd:

Pn(z)=izv&(l&1)�2 _1
? |

El

ei(.�2)

ei.&z

_(Qn+l&2v(ei.) e&iv.V(ei.)&Qn+l&2v(z) z&vV(z))
1

r(.)
d.

&
1

2? |
El

ei.+z
ei.&z \

2
ei.+z

e&i(a&1�2).A(ei.)&z&(a+1�2)A(z)+
_Qn+l&2v(ei.) f (.; A, V) d.

+z&(a+1�2)A(z) G \x+z
x&z

Qn+l&2v ; A, V, *+& . (2.18)
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3. Preliminary Results and Proof of Theorem 2.1

In order to simplify the notation we assume that El�[0, 2?]. This is no
essential loss of generality since all following arguments remain valid for a
set El�[a, a+2?], a # R, which can be seen by a simple shift (or a rota-
tion on the unit circle). To prove our main results let us first study the
expression

lim
* � 1&

- R(*ei.), R from (2.2),

in some detail. Some preliminaries: we interprete - z as a function in z on
a two-sheeted Riemann surface F having a cut along the negative real axis,
i.e., on F we distinguish between two complex numbers, the arguments of
which differ by exactly 2?, but we identify two complex numbers, whose
arguments differ by exactly 4?. Then the function

- } : F � C, z [ - z :=- * ei(:�2), z=*ei:, (3.1)

where * # R+
0 and : # [0, 4?), is uniquely defined and analytic on F"[0].

The polynomial R induces the function (of the same name)

R( } ): C � F, z [ R(z). (3.2)

Combining (3.1) and (3.2) we get that

- R( } ): C"Int(1El) � C, z [ - R(z) (3.3)

is uniquely defined and analytic on C"1El , which will be shown in Lemma
3.1 and Remark 3.2 below. Further we set

- R(ei.) := lim
* � 1&

- R(*ei.)=- lim
* � 1&

R(*ei.), . # El . (3.4)

It will also turn out (see Remark 3.2) that we have lim* � 1& - R(*ei.)
=lim* � 1+ - R(*ei.) for . # [0, 2?]"El , but lim* � 1& - R(*ei.)=
&lim* � 1+ - R(*ei.) for . # Int(El).

Lemma 3.1. For given points 0=: .0� } } } �.2l�.2l+1 :=2?, l # N, let
R # PC

2l be given as in (2.2). Then for that branch of - R(ei.) defined in (3.4),
called henceforth positive branch of - R(ei.), one has

- R(ei.)={(&1) j iei(l�2).
- |R(ei.)|,

(&1) j ei(l�2).
- |R(ei.)|,

. # [.2j&1 , .2j] j=1, ..., l

. # [.2j , .2j+1] j=0, ..., l.
(3.5)
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Proof. We first show the assertion for the case that R has simple zeros
only, i.e., 0<.1< } } } <.2l . In the following arg(z) denotes the argument
of a complex number z and is understood as a continuous function from
C to R (and not necessarily to [0, 2?) or [0, 4?)); i.e., each time when z
circles around the origin in the positive sense, arg(z) increases by 2?.

In view of (3.5) and (3.1) we have to show that

arg(R(ei.))=l.& j? for . # (.j , .j+1), j=0, ..., 2l

or equivalently that

arg(e&il.R(ei.))=&j? for . # (.j , .j+1), j=0, ..., 2l, (3.6)

where we assume that arg(e&il.R(ei.))=0 for . # (0, .1) (note that
e&il.R(ei.) is a real trigonometric polynomial).

To prove (3.6) we need an explicit representation of z&lR(z) for z=*ei.,
* # (0, 1], . # [0, 2?]. Since the polynomial R is selfreciprocal it can be
written in the form

R(z)= :
2l

k=0

(ak+ibk) zk,

ak=a2l&k # R, bk= &b2l&k # R, |a0|+|b0|{0.

Thus we obtain

Re(z&lR(z)| z=*ei.)=al+ :
2l

k=l+1
\*k&l+

1
*k&l+

_(ak cos(k&l ).&bk sin(k&l ).)

Im(z&lR(z)| z=*ei.)= :
2l

k=l+1
\*k&l&

1
*k&l+

_(bk cos(k&l ).+ak sin(k&l ).)

and as a consequence

R(.) :=Re(z&lR(z)| z=*ei.)| *=1

=al+2 :
2l

k=l+1

(ak cos(k&l ).&bk sin(k& l).)

R1(.) :=
d

d*
Im(z&lR(z)| z=*ei.)| *=1

=2 :
2l

k=l+1

(k&l )(bk cos(k&l ).+ak sin(k&l ).),
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i.e.,

R$(.)=&R1(.).

Since all zeros of R(.) are simple, and R(.)>0 on (0, .1), we have

sgn R1(.j)=&sgn R$(.j)=(&1) j+1, j=1, ..., 2l.

Thus by the definition of R1 and by the fact that Im(e&il.R(ei.))=0 on
[0, 2?] one has for all * sufficiently near to 1&

Im(z&lR(z)| z=*ei.j) {<0, j # [1, 3, ..., 2l&1]
>0, j # [2, 4, ..., 2l].

(3.7)

Because of the continuity of Im(z&lR(z)) in a neighbourhood of the unit
circumference |z|=1 property (3.7) also holds on [.j&=j , .j+=j], j=
1, ..., 2l for =j>0 sufficiently small.

Now let # be a closed, positively oriented curve in the complex plane,
starting at the point z=1, which coincides with the unit circumference
except for the regions [ei.: . # [.j&=j , .j+=j], =j>0, j=1, ..., 2l], where
# lies in the interior of the unit disk as shown in Fig. 2.1. We choose the
values =j , j=1, ..., 2l, sufficiently small such that condition (3.7) holds on #,
when # lies in the interior of the unit disk.

For . # [0, .1&=1], where .1&=1>0, we have R(.)=e&il.R(ei.)>0
and arg(e&il.R(ei.))=0. Because of (3.7) one has Im(z&lR(z))<0 on #
near ei.1 and # in the interior of the unit disk, and further e&il.R(ei.)<0,

Figure 2.1
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. # [.1+=1 , .2&=2], where .1+=1<.2&=2 . Thus we see that z&lR(z)
describes half a circle around the origin in negative sense while z passes the
point zi.1 on the curve #, i.e., arg(z&lR(z)) decreases by ?.

The same considerations for the remaining points ei.j, j=2, ..., 2l, lead to
the desired assertion (3.6), which proves the lemma if R has simple zeros
only.

If R has multiple roots then this can be considered as a limit case when
simple zeros coincide and the assertion follows. K

Remark 3.2. Let us state some comments concerning (2.4): if one
examines the methods in the proof of Lemma 3.1 in detail, one sees
that the radial boundary values lim* � 1& arg(R(*ei.))=: z1 and
lim* � 1+ arg(R(*ei.))=: z2 differ by exactly 2? if . # Int(El), i.e., z1{z2 on
the Riemann surface F. Thus, by (3.3) and (3.1) we have - R(z1){
- R(z2), although z1=z2 on the complex plane C. If . # [0, 2?]"El we
have (compare again the proof of Lemma 3.1)

lim
* � 1&

arg(R(*ei.))= lim
* � 1+

arg(R(*ei.))+= } 4?, = # [&1, 1],

i.e., lim* � 1& R(*ei.)=lim* � 1+ R(*ei.) on C and on F, and thus (compare
(3.1))

lim
* � 1&

- R(*ei.)= lim
* � 1+

- R(*ei.) for . # [0, 2?]"El .

The following lemma is needed to state and to prove Theorem 2.1.

Lemma 3.3. Let the polynomials R, V, W, A be given as in (2.2) and let
*=(*1 , ..., *m*) # 2m* . Then there exists a uniquely determined polynomial
B :=B( } ; A, W, *) # PC

2a , which satisfies the following conditions

B=B2a
(*)

(VB)(&) (zj)=&*j (za+l�2&w
- R)(&) (zj), &=0, ..., mj&1, j=1, ..., m*

lim
z � 0

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

# R. (3.8)

Proof. We denote the multiplicity of the zero of A at z=0 by m :=
a&�A and set

B� (z) :=C(z)+zmD(z)+C 2a
(*)(z) # PC

2a ,
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where the polynomials C # PC
m&1 and D # PC

2(a&m) are chosen in such a way
that the system

B� (&) (zj)=&*j \za+l�2&w W

- R+
(&)

(zj),

&=0, ..., mj&1, j=1, ..., m* (3.9)

B� (z)+za+l�2&w W(z)

- R(z)
=O(zm), as z � 0

is fulfilled. Note that zj � 1El and that - R is analytic on C"1El , thus the
derivatives in (3.9) exist and further a+l�2&w # N0 by Assumption 1.1(b)
and (2.1).

The polynomial C is uniquely determined by the second equation in
(3.9) and D uniquely up to a multiplicative constant by the first equations.
Because z=0 is not contained in [z1 , ..., zm*] we obtain uniqueness of D
if we fix D(0).

Since 1�zj is a zero of A�zm of the same multiplicity as zj , the polynomial
B� 2a

(*) solves the system (3.9), too (recall R=R*, V=V*, *j1
=*j2

if
zj1

=1�zj2
), and hence the polynomial 1

2 (B� (z)+B� 2a
(*)(z)), which is uniquely

determined if we fix D(0). Now we will choose D(0) such that the polyno-
mial

B(z) := 1
2 (B� (z)+B� 2a

(*)(z))

satisfies (3.8). Since B solves (3.9), only the last condition in (3.8) remains
to be shown. From (3.9) we obtain

B� (z)&B� 2a
(*)(z)=:iA(z), : # R depending on D(0), (3.10)

where the fact that : # R can be seen from

:� iA(z)=&(:iA(z))2a
(*)=&(B� (z)&B� 2a

(*)(z))2a
(*)=B� (z)&B� 2a

(*)(z)=:iA(z).

If we write B in the form B(z)=C(z)+C 2a
(*)(z)+ 1

2zm(D(z)+D(* )
2(a&m)(z)),

we obtain

lim
z � 0

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

=

1
2

(d0+d� 2(a&m))+rm

a0

,
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where d0=D(0), d� 2(a&m)=D(*)
2(a&m)(0) (i.e., the leading coefficient of D� (z)),

a0=(iA�zm)| z=0{0 and rm is given by the expansion

za+l�2&w W(z)

- R(z)
= :

�

j=0

rj z j.

From (3.10) we get d� 2(a&m)=d0&:a0 . Hence we can choose the free
parameter d0 such that Im d0�a0=&Im rm �a0 (note that a0 and rm are
independent of d0) and get

lim
z � 0

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

=
d0+rm

a0

&
:
2

# R.

In Remark 3.5 we will get the uniqueness of B as a by-product of
Theorem 2.1. K

In Corollary 3.6 below (after the proof of Theorem 2.1) we will give an
explicit representation of the polynomial B :=B( } ; A, W, *), which will be
needed to prove Theorem 2.5.

We now define the function

F(z; A, W, *) := &

B(z)+za+l�2&w W(z)

- R(z)
iA(z)

, (3.11)

which is analytic on C"(1El _ [zj : *j=&1]) by (3.8) and assumption
1.1(b) (note that a+l�2&w # N0). At the points zj , *j=&1, the function
F(z; A, W, *) has poles of order mj . On the set 1El we define

F(ei.; A, W, *) := lim
* � 1&

F(*ei.; A, W, *), . # El . (3.12)

For *0 :=(1, 1, ..., 1) # 2m* we abbreviate

F(z; A, W) :=F(z; A, W, *0) and B(z; A, W) :=B(z; A, W, *0).

(3.13)

The function F(z; A, W) is analytic on C"1El and plays a crucial role in
developping our theory, as the following lemma shows.

Lemma 3.4. Let the polynomials R, W, A and the function f (.; A, W)
be given and let F(z; A, W) be defined as above. Then we have

Re F(ei.; A, W)= f (.; A, W) (3.14)
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and

F(z; A, W)=
1
2? |

El

ei.+z
ei.&z

f (.; A, W) d., z # C"1El . (3.15)

Proof. Let - R(ei.) be defined as in (2.4) resp. (3.4), then we have by
(3.11)

Re F(ei.; A, W)

=

Re \iB(ei.; A, W) A(ei.)+iei(a+l�2&w). W(ei.)

- R(ei.)
A(ei.)+

|A(ei.)| 2

=

Re \iei(a+l�2&w). W(ei.)

- R(ei.)
A(ei.)+

|A(ei.)| 2 ,

since Re(iB(ei.; A, W) A(ei.))=0 by B=B2a
(* ) and A=A2a

(*). Furthermore
we obtain from (3.5) that

iei(a+l�2&w). W(ei.)

- R(ei.)
A(ei.)

={
(&1) j W(.) A(.)

- |R(.)|
# R, . # (.2j&1, .2j), j=1, ..., l

(&1) j i
W(.) A(.)

- |R(.)|
# iR, . # (.2j , .2j+1), j=0, ..., l.

Taking into consideration the fact that |A(ei.)| 2=A2(.) the assertion
(3.14) follows.

By assumption 1.1(a) we have f (.; A, W) # Lq[0, 2?], q # [1, 2), and by
the third property in (3.8) one has F(0; A, W) # R. Thus (3.15) can be
derived from (3.14) and [17, Ch.I.D and V.B] for |z|<1. Since both
functions F(z; A, W) and 1�2? �El ((ei.+z)�(ei.&z)) f (.; A, W) d. are
analytic on C"1El and coincide on |z|<1, representation (3.15) holds by
the Identity-Theorem for analytic functions on the whole region C"1El . K

Before we prove Theorem 2.1 let us note the simple fact that a moment
generating linear functional L, not necessarily of the form (1.17), whose
moments cj :=L(z&j ), j # Z, satisfy

c&j=c� j , j # N0 and
1

lim sup j � �
j

- |cj |
=*, *>0, (3.16)
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induces in a natural way the following analytic function

F(z) :=L \x+z
x&z+=c0+2 :

�

j=1

cjz j, |z|<*, where L acts on x.

(3.17)

We now are able to proof Theorem 2.1.

Proof of Theorem 2.1. By definition (3.11) we have

F(z; A, W, *)=F(z; A, W)&
C(z)
iA(z)

,

where C(z) :=B(z; A, W, *)&B(z; A, W). (3.18)

From C=C 2a
(*) , A=A2a

(*) and the third property in (3.8) one gets �C��A,
thus we can write

C(z)
iA(z)

=K0+
D(z)
iA(z)

, D # PC
�A&1

where D(&)(zj)=C (&)(zj) for j=1, ..., m*, &=0, ..., mj&1, D(&)(0)=C (&)(0)
for &=0, ..., a&�A&1, and by (3.18)

K0= &_C(z)
iA(z) } z=0&=F(0; A, W, *)&F(0; A, W) # R

(note C=C 2a
(*) and A=A2a

(*)). (3.19)

Let us denote z0 :=0, m0 :=a&�A (i.e., m0 is the order of the zero of A
at z=0) and *0 :=1 then a partial fraction expansion gives

C(z)
iA(z)

=K0+ :
m*

j=1

:
mj&1

&=0

+~ j, &

(z&zj)
&+1 , (3.20)

with

+~ j, &=
\ C

iAj+
(mj&1&&)

(zj)

(mj&1&&) !

=

(1&*j) \za+l�2&wW

iAj - R +
(mj&1&&)

(zj)

(mj&1&&) !
, Aj (z) :=

A(z)
(z&zj)

mj
,
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where the second equality follows with the help of the interpolation property
in (3.8). Let now * :=min[ |zj | : *j= &1], then by definition *>0. By
applying the Cauchy-product (&+1)-times, & # N0 , or by using the identity

1
(z&zj)

&+1=
1
& !

d &

dx& \&
1
2z \

x+z
x&z

&1++ (zj)

=&
1
& !

d &

dx& \ :
�

k=0

zk

xk+1+ (zj)

one obtains for |z|<|zj |

1
(z&zj)

&+1=
(&1)&+1

& !
1

z&+1
j

:
�

k=0

(k+1)(k+2) } } } (k+&) \ z
zj+

k

= &
1
&!

:
�

k=0
\ 1

xk+1+
(&)

(zj) } zk

and thus for |z|<* by (3.20) (note +~ 0, &=0)

C(z)
iA(z)

=K0& :
m*

j=1

:
mj&1

&=0

+~ j,&
1
& ! \

1
x+

(&)

(zj)

&2 :
�

k=1

1
2

:
m*

j=1

:
mj&1

&=0

+~ j,&
1
& ! \

1
xk+1+

(&)

(zj) } zk. (3.21)

From (3.19) and (3.21) we get

&K0=K0& :
m*

j=1

:
mj&1

&=0

+~ j, &
1
& ! \

1
x+

(&)

(zj)

and thus

K0=
1
2

:
m*

j=1

:
mj&1

&=0

+~ j, &
1
& ! \

1
x+

(&)

(zj).

Now by (3.15) (compare also (3.17)) we can write

F(z; A, W)=c0+2 :
�

k=1

ck zk, |z|<1,

where

ck :=
1

2? |
El

e&ik.f (.; A, W) d..
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Hence by (3.18) and (3.21), note that F( } ; A, W, *) is analytic on |z|<*,

F(z; A, W, *)=c*
0+2 :

�

k=1

c*
k zk, |z|<* (3.22)

with

c*
k=ck+

1
2

:
m*

j=1

:
mj&1

&=0

+~ j,&
1
& ! \

1
xk+1+

(&)

(zj)=L(x&k; A, W, *),

where L( } ; A, W, *) is given as in (1.17) with +~ j, &=(1&*j) +j, & and +j, &

from the theorem.
Now by the consideration (3.17) the assertion (2.5) follows for |z|<*

and by the same arguments as at the end of the proof of Lemma 3.4 we
obtain that (2.5) even holds on the larger set C"(1El _ [zj : *j=&1]). K

Remark 3.5. Considering the second identity in (2.5) and noting that
the left hand side of this equation does not depend on B( } ; A, W, *) we
conclude that the polynomial B( } ; A, W, *) is uniquely determined by the
system (3.8). This closes the gap in the proof of Lemma 3.3.

The following corollary gives an explicit representation of the polyno-
mial B( } ; A, W, *).

Corollary 3.6. Let the polynomials R, A, B :=B( } ; A, W, *), the func-
tion r(.) and the functional L( } ; A, W, *) be given and suppose that R has
only simple zeros. Then the polynomial B has the following representation
(where L( } ; A, W, *) acts on x):

l even:

B(z; A, W, *)

=iza _L \x+z
x&z

(x&aA(x)&z&aA(z)); A, W, *+
&

1
2? |

El

ei.+z
ei.&z

(e&iw.W(ei.)&z&wW(z))
1

r(.)
d.& . (3.23)

l odd and w # N0 :

B(z; A, W, *)

=iza+1�2 _L \x+z
x&z \

2
x+z

x&(a&1�2)A(x)&z&(a+1�2)A(z)+ ; A, W, *+
&

1
? |

El

ei(.�2)

ei.&z
(e&iw.W(ei.)&z&wW(z))

1
r(.)

d.& . (3.24)
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l odd and w # 1
2N:

B(z; A, W, *)

=iza _L \x+z
x&z

(x&aA(x)&z&aA(z)); A, W, *+
&

1
? |

El

ei(.�2)

ei.&z \
ei.+z

2
e&i(w+1�2).W(ei.)&z&(w&1�2)W(z)+ 1

r(.)
d.& .

(3.25)

Proof. We first consider the case when l is even: From (3.11) and (2.5)
we get

B(z; A, W, *)= &iA(z) L \x+z
x&z

; A, W, *++iza&wW(z)
izl�2

- R(z)
. (3.26)

From (3.5) we obtain

Re \ iei(l�2).

- R(ei.)+={
1

r(.)
# Lq(El), q # [1,2), . # El

0, . � El .

Since izl�2�- R(z) is analytic on |z|<1 it can be derived from [17, Ch.I.D
and Ch.V.B] (compare also the proof of Lemma 3.4)

izl�2

- R(z)
=

1
2? |

El

ei.+z
ei.&z

1
r(.)

d., |z|<1. (3.27)

From (3.26) and (3.27) we get for |z|<1

B(z; A, W, *)=iza _&z&aA(z) L \x+z
x&z

; A, W, *+
+z&wW(z)

1
2? |

El

ei.+z
ei.&z

1
r(.)

d.&
=iza _L \x+z

x&z
(x&aA(x)&z&aA(z)); A, W, *+

&
1

2? |
El

ei.+z
ei.&z

A(.) f (.; A, W) d.

+
1

2? |
El

ei.+z
ei.&z

z&wW(z)
1

r(.)
d.&
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B(z; A, W, *)=iza _L \x+z
x&z

(x&aA(x)&z&aA(z)); A, W, *+
&

1
2? |

El

ei.+z
ei.&z

(W(.)&z&wW(z))
1

r(.)
d.& .

This is the assertion (3.23) for |z|<1.
We now show that the right hand side in (3.23) is as well a polynomial

of degree �2a, which gives the representation (3.23) on the whole complex
plain. Let us restrict attention to the case w # N0 (the methods for w # 1

2 N
are quite similar but calculation is more tedious). By Assumption 1.1(b) we
get that a # N0 and thus

zaL \x+z
x&z

(x&aA(x)&z&aA(z)); A, W, *+ # PC
2a (polynomial in z).

(3.28)

Expanding the right hand side in (3.27) in a power series at z=0 we obtain
that

|
El

e&ij. 1
r(.)

d.=0 for j # _&
l
2

+1, ...,
l
2

&1&
and in a similar way as in (3.28) by using this orthogonality property we
get

za 1
2? |

El

ei.+z
ei.&z

(W(.)&z&wW(z))
1

r(.)
d. # PC

2a (polynomial in z)

and thus (3.23) is proven.
The representations (3.24) and (3.25) can be obtained after some calcula-

tion by applying the methods we used to prove (3.23) to the polynomials
R� (z) :=R(z2), A� (z) :=A(z2) and W� (z) :=W(z2). K

Remark 3.7. If *=*0=(1, 1, ..., 1), i.e., no Dirac ``mass-points'' appear
in L( } ; A, W, *), the representations (3.23)�(3.25) take a more trans-
parent form. For example in the case of (3.23) we have

B(z; A, W)=B(z; A, W, *0)

=iza _ 1
2? |

El

ei.+z
ei.&z

(e&ia.A(ei.)&z&aA(z)) f (.; A, W) d.

&
1

2? |
El

ei.+z
ei.&z

(e&iw.W(ei.)&z&wW(z))
1

r(.)
d.& .
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At the end of this section we give a sufficient and necessary condition
for a polynomial to be orthogonal with respect to the functional
L( } ; A, W, *), which will be needed for the proof of Theorem 2.2. In
order to get these sufficient and necessary conditions we need the following
general characterization theorem for orthogonal polynomials, which we
have proven in [24].

Theorem 3.8 (Peherstorfer and Steinbauer [24]). Let a linear func-
tional L, which fulfills (3.16), be given and let F be the function defined by
(3.17). Further let Pn # PC

n of degree �Pn=n # N0 , 0� n # PC
n and + # N0 ,

} # N _ [�].

(a) Then the following two statements are equivalent:
(i) Pn and 0� n satisfy the system

Pn(z) F(z)+0� n(z)=O4 (zn++)
as z � 0. (3.29)

Pn*(z) F(z)&0� n
(*)(z)=O4 (zn+})

(ii) L(z&jPn)=0, j # [&(}&1), ..., n++&1],

and 0� n is the polynomial of the second kind with respect to L, i.e., 0� n=0n ,
where 0n is defined as in (1.35).

(b) Suppose that the polynomial Pn # PC
n of degree n # N0 is

orthogonal with respect to L and satisfies L(z&jPn)=0, j # [&(}&1), ...,
n++&1], for some }, + # N. Let p # N0 denote the multiplicity of the zero
of Pn at z=0. Then

p�+&1 and }=+& p.

If we want to apply the general characterization-theorem 3.8(a) to
L( } ; A, W, *) we have first to show that

c*
&k=L(xk; A, W, *)=L(x&k; A, W, *)=c*

k for all k # N0 .

(3.30)

The second property supposed in (3.16), i.e., ��
k=0 c*

kzk absolutely con-
vergent on a nonempty subset of the unit circle containing z=0, has
already been shown implicitly in the proof of Theorem 2.1.

Property (3.30) can be obtained in the following way: from (3.11) we
have

F \1
z�

; A, W, *+=&F(z; A, W, *) for |z|<* :=min[ |zj | : *j=&1]>0,
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and therefore by (2.5)

&L \
1
x

+z�

1
x

&z�
; A, W, *+=&L \x+z

x&z
; A, W, *+ ,

where L( } ; A, W, *) acts on x.
By (3.22) the functional L( } ; A, W, *) can be represented as a power

series at z=0 and thus

L(1; A, W, *)+2 :
�

k=1

L(xk; A, W, *) } z� k

=L(1; A, W, *)+2 :
�

k=1

L(x&k; A, W, *) } z� k.

From the uniqueness of power series representations of analytic functions,
relation (3.30) follows.

The following theorem gives, as mentioned above, another characteriza-
tion of a polynomial to be orthogonal with respect to the linear functional
L( } ; A, W, *). This characterization, which in general is harder to verify,
but which is on the other hand less restrictive than the conditions given in
Theorem 2.2, is needed to prove Theorem 2.2.

Theorem 3.9. Let the polynomials R, V, W, A, B :=B( } ; A, W, *) and
the linear functional L( } ; A, W, *), where *=(*1 , ..., *m*) # 2m* , be given
as in (1.17), (2.2) and (3.8). Further let Pn # PC

n of degree n�max[�A+
l�2&w, 2v&l] and + # N0 . Then the following two properties are equivalent:

(a) L(z&jPn ; A, W, *)=0 for j # (0, ..., n++&1].

(b) There exists a polynomial Qn+l&2v # PC
n+l&2v such that Pn and

Qn+l&2v fulfill the following conditions:

(i) (VQn+l&2v)
(&) (zj)=*j(- R Pn)(&) (zj),

&=0, ..., mj&1, j=1, ..., m*

(ii) V(z) Qn+l&2v(z)&- R(z) Pn(z)
(3.31)

=O4 (zn&(�A +l�2&w)++), as z � 0

(iii) V(z) Q (V)
n+l&2v(z)&- R(z) Pn*(z)

=O(zn&(�A+l�2&w)+1), as z � 0.
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Further the polynomial Qn+l&2v in (3.31) can be written explicitly in the form

Qn+l&2v(z)=
i0n(z) A(z)&Pn(z) B(z)

za+l�2&w , (3.32)

where 0n denotes the polynomial of the second kind with respect to
L( } ; A, W, *).

Remark. From assumption (iii) in (3.31) it follows that �Qn+l&2v=
n+l&2v, thus we can write Q*n+l&2v instead of Q (*)

n+l&2v .

Proof of Theorem 3.9. (a) O (b) By Theorem 3.8(a), Theorem 2.1 and
(3.11) we obtain

za+l�2&wPn(z)
W(z)

- R(z)
&(i0n(z) A(z)&Pn(z) B(z))

=O4 (zn+a&�A++)

as z � 0. (3.33)
za+l�2&wPn*(z)

W(z)

- R(z)
&(&i0n

(*)(z) A(z)&Pn*(z) B(z))

=O(zn+a&�A+1)

From this system it follows that (note that n+a&�A�a+l�2&w)

i0n A&Pn B
za+l�2&w # PC and &

i0n
(*)A+Pn*B
za+l�2&w # PC.

Together with

\i0nA&PnB
za+l�2&w +

(* )

n+a&l�2+w
=&i0n

(*)A&Pn*B

one gets

� \i0nA&PnB
za+l�2&w +�n+a&

l
2

+w&\a+
l
2

&w+=n+l&2v. (3.34)

Thus Qn+l&2v from (3.32) is in fact a polynomial of degree �n+l&2v.
Now from (3.33) and (3.34) the second and the third property in (3.31)
follow and by

iV(z) 0n(z) A(z)=V(z)(za+l�2&wQn+l&2v(z)+Pn(z) B(z))

=za+l�2&w(V(z) Qn+l&2v(z)&*j - R(z) Pn(z))

+Pn(z)(V(z) B(z)+*jza+l�2&w
- R(z)) (3.35)

and by the interpolation property (3.8) we get (3.31)(i).
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(b) O (a) As in the proof of Theorem 2.1 let us denote z0 :=0, m0 :=
a&�A and *0 :=1. By the assumptions (i) and (ii) in (3.31), by the second
identity in (3.35), by the interpolation property in (3.8) and by the fact that
V and A have no zero in common, the polynomial za+l�2&wQn+l&2v(z)+
Pn(z) B(z) has a root at zj of multiplicity mj , j=0, ..., m*, thus

za+l�2&wQn+l&2v(z)+Pn(z) B(z)
iA(z)

# PC
n+2a&(2a)=PC

n . (3.36)

Now we get from Theorem 2.1, (3.11), (1.4) and Property (ii) in (3.31)

Pn(z) F(z; A, W, *)+\za+l�2&wQn+l&2v(z)+Pn(z) B(z)
iA(z) +

=O4 (zn++), as z � 0. (3.37)

From R=R*, V=V*, A=A2a
(*), and assumption (3.31)(i) it follows that

(VQ*n+l&2v)
(&) (zj)=*j (- R Pn*)(&) (zj), &=0, ..., mj&1, j=1, ..., m*.

With the help of these equations and assumption (3.31)(ii) we obtain in a
similar way as in (3.37)

Pn*(z) F(z; A, W, *)&\za+l�2&wQn+l&2v(z)+Pn(z) B(z)
iA(z) +

(*)

n

=O(zn+1), as z � 0. (3.38)

Now the orthogonality property in part (a) follows from (3.36)�(3.38),
Theorem 2.1 and Theorem 3.8(a). K

4. Proofs of Theorem 2.2, Corollary 2.4, and Theorem 2.5

Proof of Theorem 2.2. For technical reasons we show the implications
(a) O (c), (c) O (b), and (b) O (a).

(a) O (c) By Theorem 3.8(a), Theorem 2.1 and (3.11) the
orthogonality property from part (a) of the theorem is equivalent to the
system (note that } from Theorem 3.8(a) is <�)

Pn(z) F(z; A, W, *)+0n(z)=O4 (zn++)
as z � 0. (4.1)

Pn*(z) F(z; A, W, *)&0n
(*)(z)=O(zn+1)�0
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From the first equation in (4.1) we get by (3.11)

i0n(z) A(z)&Pn(z) B(z)=za+l�2&w W(z)

- R(z)
Pn(z)+O4 (zn+++a&�A). (4.2)

We first consider

Case 1: p<n&(�A+l�2&w)++. Squaring the equation in (4.2)
yields

W(z) P2
n(z)&V(z) _i0n(z) A(z)&Pn(z) B(z)

za+l�2&w &
2

=O4 (zn+ p&(�A+l�2&w)++), (4.3)

where we have shown in Theorem 3.9 that

Qn+l&2v(z) :=
i0n(z) A(z)&Pn(z) B(z)

za+l�2&w # PC
n+l&2v . (4.4)

Squaring out the bracket-term in (4.3), multiplying the whole equation by
z2(a+l�2&w) and using the fact that because of (3.8) the polynomial VB2&
z2(a+l�2&w)W vanishes at the zeros of A, yields that A divides the left-hand
side of (4.3), i.e., we can write

W(z) P2
n(z)&V(z) Q2

n+l&2v(z)=zn+ p&(a+l�2&w)++A(z) g(n)(z), (4.5)

where g(n) # PC
n& p+w+l�2&a&+ and g (n)(0){0. By taking the modified

reciprocal polynomials with respect to PC
2n+2w at both sides of the Equa-

tion (4.5) we get

W(z) Pn*
2(z)&V(z) Q(*) 2

n+l&2v(z)=A(z) g(*)
(n), n& p+w+l�2&a&+(z). (4.6)

An analog method used in (4.3) and (4.5) applied to the second equation
in (4.1) leads to

W(z) Pn*
2(z)&V(z) Q(*)2

n+l&2v(z)=zn&(a+l�2&w)+1A(z) h(n)(z), (4.7)

where h(n) # PC
n+w+l�2&a&1 and h(n)�0 (note that the right-hand side of the

second equation in (4.1) does not vanish identically). From the above two
equations (4.6) and (4.7) it follows that

g(*)
(n), n& p+w+l�2&a&+(z)=zn&(a+l�2&w)+1h(n)(z);
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thus

�g(n)�n& p+w+
l
2

&a&+&\n&\a+
l
2

&w++1+=l& p&+&1.

Recall now that the left hand side of the second equation in (4.1) is of the
form O4 (zn+}) with } # N. Then we obtain with the help of Theorem 3.8(b)
that for +>0 one even has �g(n)�l& p&+&}=l&2+. Further, again by
Theorem 3.8(b), we have +�p+1. Thus by (4.5) and (4.4) relation (2.10)
is proved. The assertion (2.11) can be seen from (4.2).

Next we consider

Case 2: p�n&(�A+l�2&w)++. Since by Theorem 3.8(b) +& p�1
for +>0, case 2 is only possible for +=0. Again, in a similar way as in case
1 again we get equation (4.7) and instead of (4.6) the equation

W(z) Pn*
2(z)&V(z) Q(*) 2

n+l&2v(z)=A(z) g(*)
(n), l&(a&�A )(z),

where g(n) # PC
l&(a&�A) , i.e.,

g(*)
(n), l&(a&�A )(z)=zn&(a+l�2&w)+1h(n)(z).

From the last identity it follows that

�g(n)�l&(a&�A)&\n&\a+
l
2

&w++1+=�A+
3l
2

&n&w&1.

Since g(n)�0 we have �A+3l�2&n&w&1�0, i.e., n��A+3l�2&w&1.
Thus by v+w=l case 2 can only occur for n<�A+l�2+v, which is not
contained in the assumptions of this theorem.

(c) O (b) From the quadratic Equation (2.10) we obtain that
Qn+l&2v , given as in (4.4), is a polynomial of degree n+l&2v satisfying
(2.7) and by (3.35) and (3.8) Qn+l&2v fulfills the interpolation property
(2.8). Further from (2.11) the first condition in (2.9) follows. By the defini-
tion of 0n in (1.35) one has in any case

Pn*(z) F(z; A, W, *)&0n
(*)(z)=O(zn), (4.8)

where F(z; A, W, *) is given as in (3.11), and thus for n>�A+l�2&w the
second condition in (2.9) is also proved. For the remaining case, i.e.,
a=�A and n=a+l�2&w, let us denote Pn(z)=:nzn+ } } } +:0 , 0n(z)=
;n zn+ } } } +;0 and F(z; A, W, *)=c*

0+2 ��
j=1 c*

j z j. From (2.11) we see
(note �A+l�2&w+1>0)

;0=&:0c*
0 (4.9)
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and on the other hand again from (1.35)

;0=:1c*
1+:2 c*

2+ } } } +:n c*
n . (4.10)

Comparing (4.9) and (4.10) we have :0c*
0+:1c*

1+ } } } +:nc*
n=0 and the

coefficient of zn on the left hand side in (4.8) vanishes, i.e.,

:0 c*
0+2:1c*

1+ } } } +2:n c*
n&;0=0. (4.11)

Thus the left hand side in (4.8) is of the order O(zn+1), note n=a+l�2&w,
and again the second assertion in (2.9) follows.

(b) O (a) We show that the system (3.31) is fulfilled which, by
Theorem 3.9, implies part (a). First let us note that because of g(n)�0 the
left hand side in (3.31)(iii) cannot vanish identically and thus by Theorem
3.8(b) there exists a { # N such that L(z{Pn ; A, W, *){0.

Concerning (3.31)(i) let us first consider the case Pn(zj){0 for a fixed zj .
From the quadratic Equation (2.7) we have for &=0, ..., mj&1

0=((VQn+l&2v&*j - R Pn)(VQn+l&2v+*j - R Pn))(&) (zj)

= :
&

k=0 \
&
k+ (VQn+l&2v&*j - R Pn)(k) (zj)

_(VQn+l&2v+*j - R Pn)(&&k) (zj). (4.12)

Since V(zj) Qn+l&2v(zj)&*j - R(zj) Pn(zj)=0 and *j - R(zj) Pn(zj){0
(note that A has no zero in 1El) one has

V(zj) Qn+l&2v(zj)+*j - R(zj) Pn(zj){0,

and (3.31)(i) follows from (4.12). If Pn(zj)=0 then (3.31)(i) follows
immediately by (2.8). Considering condition (3.31)(ii) we see by the first
property in (2.9) that the polynomial Qn+l&2v must have a zero of exact
order p at z=0. Therefore we can write for |z|<1 (recall that - R is
analytic in |z|<1):

V(z) Qn+l&2v(z)=: apz p+ap+1z p+1+ } } }
and ap=bp{0.

- R(z) Pn(z)=: bp z p+bp+1 z p+1+ } } }

Substituting these representations in Equation (2.7), which reads after mul-
tiplying with V as

R(z) P2
n(z)&V 2(z) Q2

n+l&2v(z)=O4 (zn+ p&(�A+l�2&w)++),

and comparing coefficients, leads to (3.31)(ii).
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Finally, multiplying again the quadratic Equation (2.7) with V and
calculating the modified reciprocal polynomials with respect to PC

2n+2l ,
yields

R(z) Pn*
2(z)&V 2(z) Q*2

n+l&2v(z)

={zn&p&(a+l�2&w)++V(z) A(z) g (V)
(n), l&2+(z),

zn&(a+l�2&w)+1V(z) A(z) g (V)
(n), l& p&1(z),

+>0
+=0.

Comparing coefficients and using the fact that V(0) Q*n+l&2v(0)=
- R(0) Pn*(0){0, we get from the above identity

- R(z) Pn*(z)&V(z) Q*n+l&2v(z)

={O(zn&(�A+l�2&w)+(+& p)),
O(zn&(�A+l�2&w)+1),

+>0
+=0.

This is (3.31)(iii); recall +& p�1 by Theorem 3.8(b). K

Proof of Corollary 2.4. Since f (.; A, V) is integrable and v+w=l the
trigonometric polynomial V fulfills both restriction in Assumption 1.1.
Comparing (2.1), let

a(V) :=max {�A, v&
l
2=

and define, note (2.2),

A(z; V) :=za(V)&�AA� # PC
2a(V) ,

where A� is given by A� (ei.) :=ei �A .A(.). By (1.4) the system (3.31) can
be rewritten as (note n+l&2v�max[�A+l�2&v, 2w&l])

(WPn)(&) (zj)=*j(- R Qn+l&2v)
(&) (zj),

&=0, ..., mj&1, j=1, ..., m*

W(z) Pn(z)&- R(z) Qn+l&2v(z)

=O4 (z (n+l&2v)&(�A+l�2&v)++), as z � 0

W(z) Pn*(z)&- R(z) Q*n+l&2v(z)

=O(z (n+l&2v)&(�A+l�2&v)+1), as z � 0.

Since �Qn+l&2v=n+l&2v, see the remark after Theorem 3.9, the assertion
follows from Theorem 3.9. K
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Proof of Theorem 2.5. The representations (2.15) and (2.16) follow from
(recall (2.13) resp. (3.32))

za+l�2&wQn+l&2v(z)=i0n(z) A(z)&Pn(z) B(z; A, W, *)

and from the representations of 0n in (1.35) (note n�1) and B( } ; A, W, *)
in Corollary 3.6 by straightforward calculation. Part (b) can be seen by
changing the roles of Pn , Qn+l&2v and W, V, respectively. K
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Mat. Sb. (N.S.) 9, No. 51 (1941), 121�135. [in Russian]
8. Ya. L. Geronimus, On the character of the solution of the moment problem in the case

of a limit-periodic associated fraction, Izv. Akad. Nauk SSSR. Se� r. Math. 5 (1941),
203�210. [in Russian]

9. Ya. L. Geronimus, On polynomials orthogonal on a circle, on the trigonometric moment
problem, and on the associated functions of Caratheodory's and Schur's types, C.R.
(Dokl.) Acad. Sci. URSS (N.S.) 29 (1943), 291�295; Mat. Sb. (N.S.) 15, No. 57 (1944),
99�130. [in Russian]

10. Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer.
Math. Soc. Transl. 3 (1962), 1�78.

11. J. S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically periodic
recurrence coefficients, J. Approx. Theory 46 (1986), 251�283.

12. J. S. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a
polynomial mapping, Trans. Amer. Math. Soc. 308 (1988), 559�581.

13. J. S. Geronimo and W. Van Assche, Approximating the weight function for orthogonal
polynomials on several intervals, J. Approx. Theory 65 (1991), 341�371.

14. L. Golinskii, P. Nevai, and W. Van Assche, Perturbation of orthogonal polynomials on
an arc of the unit circle, J. Approx. Theory 83 (1995), 392�422.

15. U. Grenander and G. Szego� , ``Toeplitz Forms and Their Applications,'' Chelsea,
New York, 1984 (also Univ. of California Press, Berkeley�Los Angeles, 1958).

16. V. Heine, ``Electronic Structure from the Point of View of the Local Atomic Environ-
ment,'' Solid State Physics, Vol. 35, Academic Press, New York, 1980.

17. P. Koosis, ``Introduction to Hp Spaces,'' London Mathematical Society Lecture Note
Series, Vol. 40, Cambridge Univ. Press, Cambridge, 1980.

183ORTHOGONAL POLYNOMIALS



File: 640J 294945 . By:CV . Date:23:05:96 . Time:15:50 LOP8M. V8.0. Page 01:01
Codes: 2800 Signs: 2220 . Length: 45 pic 0 pts, 190 mm

18. A. Magnus, Recurrence coefficients for orthogonal polynomials on connected and non-
connected sets, in ``Pade� Approximation and its Applications'' (L. Wuytack, Ed.),
pp. 150�171, Lecture Notes in Mathematics, Vol. 765, Springer, Berlin, 1979.

19. J. Nuttall and S. R. Singh, Orthogonal polynomials and Pade� approximations
associated with a system of arcs, J. Approx. Theory 21 (1977), 1�42.

20. F. Peherstorfer, On Bernstein�Szego� orthogonal polynomials on several intervals,
SIAM J. Math. Anal. 21 (1990), 461�482.

21. F. Peherstorfer, On Bernstein�Szego� orthogonal polynomials on several intervals. II.
Orthogonal polynomials with periodic recurrence coefficients, J. Approx. Theory 64
(1991), 123�161.

22. F. Peherstorfer, Orthogonal and extremal polynomials on several intervals, J. Comput.
Appl. Math. 48 (1993), 187�205.

23. F. Peherstorfer and R. Steinbauer, On polynomials orthogonal on several intervals,
Ann. Num. Math. 2 (1995), 353�370.

24. F. Peherstorfer and R. Steinbauer, Characterization of general orthogonal polyno-
mials with respect to a functional, J. Comput. Appl. Math., to appear.

25. F. Peherstorfer and R. Steinbauer, Orthogonal polynomials on arcs of the unit circle. II.
Orthogonal polynomials with periodic reflection coefficients, J. Approx. Theory, to appear.

26. F. Peherstorfer and R. Steinbauer, Asymptotic behaviour of orthogonal polynomials
on the unit circle with asymptotically periodic reflection coefficients, submitted for
publication.

27. D. G. Pettifor and D. L. Weaire, ``The Recursion Method and Its Applications,''
Springer Series in Solid-State Sciences, Vol. 58, Springer-Verlag, Berlin, 1985.

28. R. Steinbauer, ``Orthogonalpolynome auf mehreren Bo� gen des komplexen Einheits-
kreises,'' Dissertation, Linz 1992.

29. M. Toda, ``Theory of Nonlinear Lattices,'' Springer Series in Solid-State Sciences, Vol. 20,
Springer-Verlag, Berlin, 1981.

30. P. Turchi, F. Ducastelle, and G. Treglia, Band gaps and asymptotic behaviour of
continued fraction coefficients, J. Phys. C: Solid State Phys. 15 (1982), 2891�2924.

31. G. Szego� , ``Orthogonal Polynomials,'' 4th ed., Amer. Math. Soc. Colloq. Publ., Vol. 23,
Amer. Math. Soc., Providence, RI, 1975.

184 PEHERSTORFER AND STEINBAUER


